Chem. Ber. 118, 4531-4542 (1985)

Basische Metalle, LIV¹⁾

Ringverbrückte Rhodium-Zweikernkomplexe mit $(C_5H_4)_2CH_2$ - und $(C_5H_4)_2SiMe_2$ -Dianionen als Brückenliganden. Kristall- und Molekülstruktur von $[(C_5H_4)_2CH_2]Rh_2(CO)_2(\mu$ -CO)

Helmut Werner*, Hans Jürgen Scholz und Ralf Zolk

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 28. Januar 1985

Li₂[(C₅H₄)₂CH₂] (2) reagiert mit [L₂RhCl]₂ (3–5) zu den ringverbrückten Zweikernkomplexen [(C₅H₄)₂CH₂][RhL₂]₂ [L₂ = (C₂H₄)₂ (6), (C₂H₄)PMe₃ (7), (PMe₃)₂ (8)]. Durch Umsetzung von [(CO)₂RhCl]₂ (10) und 2 entsteht die zweifach verbrückte Verbindung [(C₃H₄)₂-CH₂]Rh₂(CO)₂(μ -CO) (12), deren Kristall- und Molekülstruktur bestimmt wird. Die Protonierung und Methylierung der Komplexe 7, 8 und [(C₅H₄)₂CH₂][Rh(CO)PMe₃]₂ (9) führt zu den Dihydrido- bzw. Dimethyldirhodium-Dikationen {[(C₅H₄)₂CH₂][RhE(L)PMe₃]₂}²⁺ (E = H, CH₃), die als PF₆-Salze 13–18 isoliert werden. Aus 9 und Methylioidi ist die Diacetyldirhodium-Verbindung 19 erhältlich. Eine elektrophile Addition an nur einem Metallzentrum läßt sich in keinem Fall durchführen. Die Darstellung der Zweikernkomplexe 20 und 22–24 mit (C₅H₄)₂SiMe²₂⁻ als Brückenliganden wird ebenfalls beschrieben.

Basic Metals, LIV^{1} Ring-connected Dinuclear Rhodium Complexes with $(C_5H_4)_2CH_{2^-}$ and $(C_5H_4)_2SiMe_{2^-}$ Dianions as Bridging Ligand. The Crystal and Molecular Structure of $[(C_5H_4)_2CH_2]Rh_2(CO)_2(\mu-CO)$

Li₂[(C₅H₄)₂CH₂] (2) reacts with [L₂RhCl]₂ (3-5) to give the ring-connected dinuclear complexes [(C₅H₄)₂CH₂][RhL₂]₂ (L₂ = (C₂H₄)₂ (6), (C₂H₄)PMe₃ (7), (PMe₃)₂ (8)]. The reaction of [(CO)₂RhCl]₂ (10) with 2 produces the doubly bridged compound [(C₅H₄)₂CH₂]-Rh₂(CO)₂(μ -CO) (12), the crystal and molecular structure of which has been determined. The protonation and methylation of the complexes 7, 8, and [(C₅H₄)₂CH₂][Rh(CO)PMe₃]₂ (9) lead to the dihydrido- and dimethyldirhodium dications {[(C₅H₄)₂CH₂][RhE(L)-PMe₃]₂}²⁺ (E = H, CH₃) which are isolated as the PF₆ salts (13-18). The diacetyldirhodium compound 19 is formed from 9 and methyl iodide. It has not been possible in any of these reactions to accomplish a single electrophilic addition to only one metal atom. The preparation of the dinuclear complexes 20 and 22-24 containing the (C₅H₄)₂SiMe₂²⁻ dianion as bridging ligand is also described.

Einkernige Halbsandwich-Komplexe des Typs $C_5R_5ML_2$ und C_5R_5MLL' (R = H, CH₃; M = Co, Rh, Ir; L = PR₃, P(OR)₃; L' = PR₃, P(OR)₃, CNR, C₂H₄ etc.) sind Metall-Basen und reagieren mit zahlreichen Elektrophilen unter Bildung einer

neuen Metall-Element-Bindung^{2,3)}. Der Metall-basische Charakter bleibt auch bewahrt, wenn zwei C_5R_5M -Einheiten durch zwei Dimethylphosphido-Brücken und eine Metall-Metall-Bindung verknüpft sind. Die kürzlich von uns synthetisierten Zweikernverbindungen $[C_5H_5Co(\mu-PMe_2)]_2$ und $[C_5Me_5Rh(\mu-PMe_2)]_2$ gehen demzufolge z. B. mit Brönsted-Säuren^{4,5)} und SO₂⁶⁾ Additionsreaktionen ein, die zu Produkten mit einer M(μ -H)M- bzw. M(μ -SO₂)M-Gruppierung führen. Bei diesen Umsetzungen wirkt das Elektronenpaar der Metall-Metall-Bindung als Donorzentrum, so daß das addierte Elektrophil in verbrückender Position zwischen den beiden Metallatomen fixiert ist.

Komplementär zu diesen Arbeiten beschäftigte uns die Frage, wie sich symmetrisch gebaute Zweikernkomplexe *mit zwei nucleophilen Zentren ohne Metall-Metall-Bindung* gegenüber Elektrophilen verhalten. Würde das eine Metall die Veränderung am zweiten bemerken oder würde durch die fehlende Wechselwirkung eine Kooperativität ausscheiden?

Zur Beantwortung dieser Frage haben wir ringverbrückte Zweikernkomplexe des Rhodiums mit $(C_5H_4)_2CH_2$ - und $(C_5H_4)_2SiMe_2$ -Brückenliganden synthetisiert und berichten nachfolgend über die ersten Ergebnisse dieser Untersuchungen⁷).

Darstellung und Eigenschaften der [(C5H4)2CH2]Rh2-Zweikernkomplexe

Nach einer von *Neuenschwander*⁸⁾ entwickelten und von $Katz^{9)}$ verbesserten Methode läßt sich Bis(cyclopentadienyl)methan (1) durch Reaktion von C₅H₅Na mit CH₂Cl₂ herstellen. Die Umsetzung von 1 mit *n*BuLi führt zu dem Dilithiumsalz [(C₅H₄)₂CH₂]Li₂ (2), das bereits von $Katz^{9}$ und *Mueller-Westerhoff*¹⁰⁾ zur Darstellung von Metallocenophanen eingesetzt wurde.

2 reagiert auch mit den chloroverbrückten Rhodiumverbindungen $[L_2RhCl]_2$ (3-5) zu den Zweikernkomplexen 6-8 (siehe Schema 1). Die gemischte Carbonyl(trimethylphosphan)-Verbindung 9 ist durch Ligandenaustausch aus 8 und CO erhältlich.

Die Verbindungen **6**–**9** sind kristalline Feststoffe, die sich bezüglich Luftempfindlichkeit und Löslichkeit von den entsprechenden einkernigen Komplexen $(C_5H_4R)RhL_2$ und $(C_5H_4R)RhLL'$ praktisch nicht unterscheiden. Ihre Zusammensetzung ist durch Elementaranalysen und Massenspektren gesichert. Von den ¹H-NMR-Daten, die in Tab. 1 zusammengefaßt sind, ist erwähnenswert, daß für die CH₂-Protonen des verbrückenden $(C_5H_4)_2CH_2$ -Liganden entweder ein Singulett (**6**), ein triplettähnliches Signal (**7**) oder ein Multiplett (**8**, **9**) beobachtet wird. In ähnlicher Weise ergeben auch die Ringprotonen unterschiedliche Aufspaltungsmuster. Im Fall von **6** und **9** wird aufgrund des Spektrenvergleiches mit $(C_5H_4R)RhL_2^{11}$ und Fe $(C_5H_4R)_2^{12}$ von den zwei Signalen für die C₅H₄-Gruppen dasjenige bei höherem Feld den Protonen H³, H⁴, H^{3°} und H^{4°} zugeordnet. Die stark verbreiterten Multipletts für die C₂H₄-Protonen in den Spektren von **6** und 7 deuten – wie auch bei anderen Ethylenrhodium-Komplexen¹³⁾ – auf eine rasche Rotation des Olefins um die Rh-C₂H₄-Bindungsachse hin.

Die Reaktion von $[(CO)_2RhCl]_2$ (10) mit 2 führt zu dem ringverbrückten Tricarbonyldirhodium-Komplex 12, wobei als Zwischenstufe vermutlich die zu 6-8

Schema 1. $---= C_5H_4$; 3 = $[(C_2H_4)_2RhCl]_2$; 4 = $[PMe_3(C_2H_4)RhCl]_2$; 5 = $[(PMe_3)_2RhCl]_2$

analoge Verbindung $[(C_{5}H_{4})_{2}CH_{2}][Rh(CO)_{2}]_{2}$ (11) gebildet wird. Ein ähnliches Verhalten wie 11 zeigt das einkernige Dicarbonyl(cyclopentadienyl)rhodium, das sowohl thermisch^{14,15}) als auch photochemisch^{16,17} in die Zweikernverbindung $[C_{5}H_{5}(CO)Rh]_{2}(\mu$ -CO) umgewandelt wird.

Das IR-Spektrum von 12 zeigt in Übereinstimmung mit der Molekülstruktur (s. u.) sowohl Banden für endständige als auch verbrückende CO-Gruppen. Im Gegensatz zu $[C_3H_3(CO)Rh]_2(\mu$ -CO) (v(CO) = 1961, 1812 cm⁻¹)¹⁴ findet man für 12 (v(CO) = 2020, 2000, 1960 und 1800 cm⁻¹) allerdings 3 Valenzschwingungen endständiger CO-Liganden, was auf die Veränderung der Symmetrie (in $[C_5H_3(CO)Rh]_2(\mu$ -CO) liegen die Cyclopentadienylringe in *trans*-Anordnung vor) zurückzuführen ist. Im IR-Spektrum der Verbindung $[(C_5H_4)_2SiMe_2]Fe_2(CO)_4$, die wie 12 das Strukturelement (CO)₂M₂(μ -CO) (mit einer zusätzlichen CO-Brücke) besitzt¹⁸, werden 2 Banden für endständige CO-Gruppen bei 1990 und 1950 cm⁻¹ (in CHCl₃) beobachtet¹⁹. Die Aufspaltung der Valenzschwingung bei 2020/ 2000 cm⁻¹ im Fall von 12 ist wahrscheinlich nicht durch Kristalleffekte bedingt, da die Spektren in KBr und THF übereinstimmen.

Chem. Ber. 118 (1985)

Kom- plex	C ₅ H ₄ δ	-CH ₂	PMe ₃ δ	$J_{\rm RhH}$	$J_{ m PH}/N$	RhE ^{b)} δ	J _{RħH}	$J_{ m PH}$
6 ^{c)}	4.84 ("t") ^{f)} 5.04 ("t")	2.83 (s)	· · · ·					
7 ^{d)}	5.28 (m, br)	3.27 ("t")	0.90 (dd)	1.0	9.0			
8	5.35 (m, br)	3.90 (m, br)	1.30 (dvt)	1.1	8.4			
9	5.10 (m) ^{f)} 5.50 (m)	3.70 (m)	1.20 (dd)	1.2	9.6			
11	5.58 (m, br) ⁿ 5.85 ("t")	3.73 (br)						
13	5.40 (m, br)	3.58 (m, br)	1.80 (dvt)	1.0	11.0	-12.67 (dt)	20	30
15	5.40 (m, br) ^{f)} 5.85 (m, br)	3.93 (m, br)	1.73 (dd)	1.0	11.2	-10.23 (dd)	20	28
16	5.26 ("t") ^{f)} 5.53 ("t")	3.10 (m, br)	1.70 (dvt)	0.9	11.0	0.65 (dt)	2.2	5.8
1 7 e)	5.56 ("t") ^{f)} 5.77 ("t")	3.50 (m, br)	1.73 (dd)	0.9	11.5	1.07 (dd)	2.8	6.1
18	5.95 (m, br)	3.53 (m, br)	1.85 (dd)	1.1	12.2	1.06 (dd)	2.2	5.0
19	4.79 (m, br) ^{f)} 5.37 (m, br)	4.09 (m, br)	1.47 (dd)	0.9	11.3	3.15 (s)		

Tab. 1. ¹H-NMR-Daten bei 25 °C der Komplexe 6-9, 11, 13, 15-19 (6-9, 11 und 19 in C_6H_6 ; 13, 15-18 in CD₃NO₂; δ in ppm, int. TMS; J und N in Hz)^{a)}

^{a)} Verwendete Abkürzungen: s = Singulett, d = Dublett, "t" = triplettähnliches Signal, vt = virtuelles Triplett, m = Multiplett, $b^{n} E = H(13, 15)$, $CH_3(16-18)$, $COCH_3(19)$. $-^{\circ}\delta(C_2H_4) = 1.37$ und 2.80 (m, br). $-^{d}\delta(C_2H_4) = 1.70$ und 2.60 (m, br). $-^{e_1}\delta$ - H³⁻(C₂H₄) = 3.50 (m, br). $-^{\eta}$ Zuordnung siehe Text und nebenstehende Struktur.

H² H⁵ H⁵ H²

Kristall- und Molekülstruktur von 12

Zur Absicherung des Strukturvorschlags für 12 wurde eine Röntgenstrukturanalyse durchgeführt. In Abb. 1 ist das Molekülmodell, in Tab. 3 sind die wichtigsten Abstände und Winkel angegeben. 12 besitzt eine kristallographische Spiegelebene, die durch die Atome O1, C1, C3 und die an C3 gebundenen Wasserstoffatome geht. Der Metall-Metall-Abstand ist mit 265.0(1) pm etwas kürzer als in anderen, vergleichbaren Komplexen mit einer Rh-Rh-Einfachbindung. Als Beispiele seien genannt: $[C_5H_3(CO)Rh]_2(\mu$ -CO), $Rh - Rh = 268.1(2) \text{ pm}^{16}$; $[C_5Me_5(CO)Rh]_2(\mu-CO), Rh-Rh = 274.3(1) pm^{20}; [C_5H_5(CO)Rh]_2(\mu-CH_2),$ Rh - Rh =266.5(1) pm¹⁵ $[(C_5Me_5)(CO)Rh]_2(\mu-CH_2),$ und Rh - Rh = $267.2(1) \text{ pm}^{20}$. Während in diesen Verbindungen die C₅R₅-Ringe und damit auch die endständigen CO-Gruppen trans-ständig sind, wird in 12 durch den ringverbrückten Chelatliganden eine cis-Anordnung erzwungen.

Die Abstände Rh – C1 und Rh – C2 entsprechen mit 201.0(5) und 184.4(5) pm ungefähr den Werten, die in $[C_5H_5(CO)Rh]_2(\mu$ -CO) gefunden wurden (186.7 bzw. 200.4 pm¹⁶). Sie sind jedoch etwas größer als in $[C_5Me_5(CO)Rh]_2(\mu$ -CO) (183.6 bzw. 196.8 pm²⁰), was wahrscheinlich eine Folge des besseren Donorvermögens der permethylierten Fünfringliganden und der dadurch verstärkten M–CO- Rückbindung ist. In Übereinstimmung damit resultieren in **12** kürzere C–O-Abstände (115.1(6) bzw. 117.2(8) pm) als in $[C_5Me_5(CO)Rh]_2(\mu$ -CO) (116.2 bzw. 121.1 pm²⁰).

Abb. 1. Molekülstruktur von 12

Der Bindungsabstand C3 – C4 ist mit 150.8(6) pm gegenüber einer normalen C – C-Einfachbindung deutlich verkürzt, während der Winkel C4 – C3 – C4* mit 112.3(4)° um ca. 3° größer als der Idealwert für sp³-hybridisierte C-Atome ist. Die Rh – C(C₅H₄)-Abstände liegen zwischen 224.4(4) und 230.4(4) pm. Dieser Unterschied wird vermutlich nicht nur durch den *trans*-Einfluß der CO-Liganden, sondern auch durch induktive und sterische Effekte der CH₂-Brücke bedingt. Als Konsequenz davon nehmen die Abstände C4 – C5, C4 – C8 (Mittel: 143.9 pm) über C6 – C7 (143.5(6) pm) nach C5 – C6, C7 – C8 (Mittel: 140.6 pm) ab.

Tab. 2. Atomparameter. Der anisotrope Temperaturfaktor ist definiert: $T = \exp[-1/4 (h^2 a^{*2} B_{11} + k^2 b^{*2} B_{22} + l^2 c^{*2} B_{33} + 2hka^* b^* B_{12} + 2hla^* c^* B_{13} + 2klb^* c^* B_{23})]; B_{ij} \text{ in } 10^4 \text{ pm}^2$

Atom	x/a	y/b	z/c	B ₁₁	B22	B ₃₃	B ₁₂	⁸ 13	823
Rù	ú.19376(5)	0.15507(2)	0.07319(2)	1.57(1)	1.48(1)	1,29(1)	0.03(1)	0,05(1)	0.02(1
0(1)	-0,0292(8)	0,2500	-0.0829(3)	3,0(2)	2.8(2)	1.8(2)	0.0	-0.6(2)	0.0
0(2)	0.5384(6)	0,1212(3)	-0.0675(2)	2.8(2)	3.9(2)	2,6(2)	0.8(1)	1,0(1)	0.1(1)
C(1)	0.0629(10)	0.2500	-0.0135(4)	1.5(3)	2.0(3)	1.9(3)	0.0	0.4(2)	0.0
C(2)	0.4077(8)	0.1334(3)	-0.0126(3)	2.0(2)	1.9(2)	2,0(2)	0.4(2)	-0.4(2)	0.1(2)
C(3)	-0.1508(10)	0,2500	0,2203(5)	1.9(3)	2.3(3)	2.1(3)	0.0	0.3(2)	0.0
C(4)	-0.0284(7)	0.1603(3)	0,1940(3)	1.9(2)	2.1(2)	1.6(2)	-0.3(2)	0.5(2)	0.5(2)
C(5)	0.1842(8)	0.1297(3)	0,2266(3)	2.3(2)	2.0(2)	1.1(2)	-0.3(2)	0.1(2)	0.3(1)
C(6)	0.2358(7)	0.0435(3)	0.1828(3)	2.1(2)	1.9(2)	1,6(2)	0.0(2)	0.0(2)	0.7(2)
C(7)	0.0555(7)	0,0161(3)	0,1259(3)	2.6(2)	1.6(2)	1.8(2)	-0.4(2)	-0.1(2)	0.2(2)
C(8)	-0.1093(7)	0,0863(3)	0.1358(3)	2.1(2)	2.1(2)	1.5(2)	-0.3(2)	0.1(2)	0.5(2)

Die Cyclopentadienylringe sind in erster Näherung planar. Das Kohlenstoffatom C3 befindet sich 4.7(6) pm unterhalb der Ringebenen, die einen Winkel von 120.5° einschließen. Die CH₂(C₃H₄)-Gruppierung ist nicht symmetrisch, sondern stark verdreht über der Rh-Rh-Bindungsachse angeordnet, so daß die Abstände von C5 und C8 sowie von C6 und C7 zu der durch O1, C1 und C3 gehenden Ebene nicht identisch sind (Tab. 3).

Tab. 3. Interatomare Abstände (pm) und Winkel (°) in 12 (M repräsentiert den Schwerpunkt des Cyclopentadienylrings; mit "*" sind Atome der benachbarten asymmetrischen Einheit (x, 0.5 - y, z) gekennzeichnet)

Rh-Rh*							
	265.0(1)	C1-01	117.2(8)	Rh-Cl-Rh [♥]	82.5(2)	C4-C3-C4*	112.3(4
Rh-Cl	201,0(5)	C2-02	115.1(6)	Rh-C1-01	138.7(4)	C4-C5-C6	107.3[4
Rh-CZ	184.4(5)	C3-C4	150.8(6)	Rh-G2~02	178.4(4)	C5-C6-C7	109.3(4
Rh-C4	224.4(4)	C4-C5	144.4(6)	Cl-Rh-Rh	48.8(2)	06-07-08	107.3[4
Rh-C5	230.4(4)	C5-C6	140.4(6)	C1~Rh-C2	86.9(2)	C7-C8-C4	108.7(4
Kh-C6	226.6(4)	C6-C7	143.5(6)	C2-Rh-Rh	99.4(ì)	C8-C4-C5	107.2(4
Rh-C7	225.3(4)	C7-C8	140.8(6)	M ∼Rh-Rh*	119.6	C3-C4-C5	126.8(4
Rh-C8	227.5(4)	C8-C4	143.3(5)	M -Rh-Cl	131.4	C3-C4-C8	125.8(4
Rh-M	191.8			M -Rh=C2	137.2		
Intern	lanarwinke	1					
M −Rh−P	₹h – M :	Rh-C1-01-Rh	122	.1			
M -Rh-R	Rh M :	Rh-C2-O2-Rh	162	.2			
M _Rh_A	Rh M :	C4-C3-C4	34	.9			
				6			
Rh-C1-	01-Rb [*] :	Rh-C2-02-Rh*	75	.0			
Rh-Cl- C4 bis	01-Rb [*] : C8 :	Rh-C2-O2-Rh C4 bis C8 ⁴⁴	75 120	.5			
Rh-Cl- C4 bis	01-Rh [*] : C8 :	Rh-C2-O2-Rh [*] C4 [*] bis C8 [*]	75 120	.5			
Rh-Cl-H C4 bis Abstän	01-Rb [*] : C8 : de von Cl	Rh-C2-02-Rh C4 bis C8 ⁴ - C8 sowie 01	75 120 L und 02 zur	.5 Ebene durch	M-Rh-Rh [®] -M [®]		
Rh-Cl-4 C4 bis Abstän C1 l	01-Rh [*] : C8 : de von C1 29.7	Rh-C2-02-Rh C4 bis C8 ⁴⁴ - C8 sowie 01 C4 37.5	75 120 L und 02 zur C2 -56.	.5 · Ebene durch g	M-Rn-Rh [*] -M*		
Rh-Cl- C4 bis Abstän C1 l O1 2	01-Rh [*] : C8 : de von C1 29.7 26.8	Rh-C2-O2-Rh [®] C4 [®] bis C8 [#] ~ C8 sowie O1 C4 37.5 C7 38.6	75 120 L und 02 zur C2 -56, 02 -90.	9 0	M-Rh-Rh [*] -M [*]		
Rh-Cl-4 C4 bis Abstän C1 l O1 2 C3	01-Rh [*] : C8 : de von C1 29.7 26.8 85.6	Rh-C2-O2-Rh [®] C4 [®] bis C8 [#] ~ C8 sowie O1 C4 37.5 C7 38.6 C8 120.8	75 120 L und 02 zur C2 -56. 02 -90. C5 -99.	us Ebene durch 9 0 5	M-Rh-Rh [*] -M [*]		
Rh-Cl-4 C4 bis Abstän C1 1 O1 2 C3	01-Rh [*] : C8 : de von C1 29.7 26.8 85.6	Rh-C2-O2-Rh [®] C4 [®] bis C8 [®] ~ C8 sowie O1 C4 37.5 C7 38.5 C8 120.8	75 120 L und 02 zur C2 -56. 02 -90. C5 -99. C6 -97.	u5 Ebene durch 9 0 5 4	M-Rh-Rh [®] -M [®]		
Rh-Cl-4 C4 bis Abstänn C1 l O1 2 C3	01-Rh [®] : C8 : de von C1 29.7 26.8 85-6	Rh-C2-02-Rh [®] C4 [®] bis C8 [®] - C8 sowie 01 C4 37.5 C7 38.6 C8 120.6	75 120 L und 02 zur C2 -56. 02 -90. C5 -99. C6 -97.	9 5 5 4	M-Rh-Rh [®] -M [®]		
Rh-Cl-4 C4 bis Abstänn C1 l C1 2 C3 Abstän	01-Rh [®] : CB : de von Cl 29.7 26.8 85.6 de von C4	Rh-C2-02-Rh* C4* bis C8* - C8 sowie 01 C4 37.5 C7 38.6 C8 120.8 - C8 zur Eber	75 120 120 02 -56. 02 -90. 05 -99. 06 -97. ne durch 01,	.5 Ebene durch 9 0 5 4 , C1 und C3	M-Rh-Rh [®] -M [®]		

Oxidative Additionsreaktionen der Komplexe 7-9

Die Reaktivität der ringverbrückten Verbindungen 7–9 gegenüber Elektrophilen ist erwartungsgemäß sehr stark von der Art der Zweielektronen-Donor-Liganden abhängig. Der Komplex 8, der zwei sehr elektronenreiche Zentralatome besitzt, reagiert bereits mit der schwachen Säure NH_4PF_6 unter Bildung von { $[CH_2(C_5H_4)_2][RhH(PMe_3)_2]_2$ }(PF_6)_2 (13). Auch bei Verwendung äquimolarer Mengen 8 und NH_4PF_6 wird nur (mit einer maximalen Ausbeute von 50%) das PF_6 -Salz des Dihydridodirhodium-Dikations gebildet. Die NMR-spektroskopische Kontrolle des Reaktionsverlaufs zeigt, daß neben 8 und 13 kein monoprotoniertes Teilchen nachweisbar ist. Dies läßt darauf schließen, daß die elektrophile Addition an *einem* Zentrum (und die damit einhergehende Oxidation von Rh¹ zu Rh^{III}) die Nucleophilie des *zweiten* nicht mindert, d. h. die sonst bemerkbare Hemmung des Angriffs eines Protons auf ein bereits protoniertes Komplexkation nicht eintritt.

Die Ethylen(phosphan)- und Carbonyl(phosphan)-Verbindungen 7 und 9 lassen sich nicht mit NH_4PF_6 , sondern nur mit den stärkeren Säuren CF_3SO_3H oder

HBF₄ protonieren. Sie entsprechen somit in ihrem Verhalten den einkernigen Komplexen C₅H₅Rh(C₂H₄)PMe₃ und C₅H₅Rh(CO)PMe₃, die ebenfalls mit HBF₄, nicht jedoch mit NH₄PF₆, zu den Kationen $[C_5H_5RhH(C_2H_4)PMe_3]^+$ und $[C_5H_5RhH(CO)PMe_3]^+$ reagieren^{21,22}. Der Strukturvorschlag für 14 gründet sich allein auf die Elementaranalyse, da das ¹H-NMR-Spektrum (in CD₃NO₂) eine eindeutige Interpretation nicht zuläßt. Vermutlich liegt in Lösung ein Gleichgewicht zwischen der RhH(C₂H₄)- und der RhC₂H₅-Form vor, wobei letztere noch ein Solvensmolekül enthalten könnte. Im Fall der einkernigen Verbindungen $[C_5H_5RhH(C_2H_4)PR_3]^+$ (R = Me, *i*Pr) ist ein solches Gleichgewicht nachgewiesen²¹.

7, 9 + 2 $CF_3SO_3H \xrightarrow{(PF_6^-)} \{ [(C_5H_4)_2CH_2] [RhH(L)PMe_3]_2 \} (PF_6)_2$ 14: L = C₂H₄; 15: L = CO

Die Methylierung von 7, 8 und 9 mit Methyltriflat in einem Benzol/Ether-Gemisch bereitet keine Probleme. Die isolierten PF_6 -Salze der Dimethyldirhodium-Dikationen (16–18) sind im Gegensatz zu den Salzen der Dihydridodirhodium-Komplexe 13–15 luftstabil und zeigen ausnahmslos gut interpretierbare ¹H-NMR-Spektren. Bei der Umsetzung von 9 mit Methyliodid in Benzol/Aceton entsteht die Diacetyl-Verbindung 19, wahrscheinlich über die Primärstufe {[(C₅H₄)₂CH₂][RhCH₃(CO)PMe₃]₂}I₂ als Intermediat. Der entsprechende einker-

nige Komplex $[C_5H_5RhCH_3(CO)PMe_3]$ I kann bei Verwendung von Pentan als Lösungsmittel gefaßt werden; er lagert sich bereits bei Zugabe von sehr wenig Aceton in die Neutralverbindung $C_5H_5RhCOCH_3(PMe_3)$ I um²³⁾. Es sei darauf hingewiesen, daß auch bei den Reaktionen von 7–9 mit CF₃SO₃CH₃ und CH₃I der Einsatz äquimolarer Mengen nicht zu einem monomethylierten Kation bzw. zu einem Monoacetyldirhodium-Komplex führt; die Oxidation und Positivierung *eines* Metallzentrums übt auch hier keinen (nachweisbaren) Einfluß auf die Reaktivität des zweiten Zentrums aus.

Rhodiumkomplexe mit verbrückenden (C5H4)2SiMe2-Liganden

Ergänzend zu den Arbeiten über die ringverbrückten $[(C_5H_4)_2CH_2]Rh_2$ -Komplexe wurde auch die Reaktivität der zu 2 analogen Dilithium-Verbindung Li₂[(C₅H₄)₂SiMe₂] (21) gegenüber 5 und 10 untersucht. Da die "Spannweite" von 21 wegen der Radiuszunahme von C zu Si größer als diejenige von 2 ist, interessierte uns besonders die Frage, ob bei der Reaktion mit 10 vielleicht ein Tetracarbonyldirhodium-Komplex entsteht.

Dies trifft jedoch nicht zu. Die Umsetzungen mit 5 und 10 führen zu den mit 8 und 11 vergleichbaren Verbindungen 20 und 22, von denen die erste ein violettes, extrem luftempfindliches Öl darstellt, das nicht analysenrein erhalten werden konnte. Es wurde über den ebenfalls sehr labilen und daher nur IR- und ¹H-NMRspektroskopisch charakterisierten Carbonyl(phosphan)-Komplex 23 in das PF₆-Salz 24 übergeführt. Hiervon liegt eine Elementaranalyse vor. Wie bei der Darstellung von 18 gelang es wiederum nicht, bei Verwendung äquimolarer Mengen der Ausgangsverbindungen ein Produkt mit nur einer Rh-CH₃-Bindung nachzuweisen. Die beiden Metallzentren beeinflussen sich offensichtlich bei allen im Rahmen dieser Arbeit untersuchten Reaktionen der Rh₂-Zweikernkomplexe nicht, so daß stets eine zweifache oxidative Addition eintritt. Die freie Drehbarkeit der jeweiligen Molekülhälften um die C_5H_4 - CH_2 - bzw. C_5H_4 - $SiMe_2$ -Bindung spielt dabei sicher eine entscheidende Rolle. Möglicherweise ändert sich die Situation, wenn es gelingt, die beiden Metallatome zusätzlich noch mit einem zweizähnigen Bis(phosphan)-Liganden wie z. B. CH₂(PR₂)₂ zu verbrücken und sie dadurch in eine engere Nachbarschaft zu zwingen. Studien hierzu sind im Gange; über ihre Ergebnisse werden wir zu gegebener Zeit berichten.

$$[(C_{5}H_{4})_{2}SiMe_{2}][Rh(PMe_{3})_{2}]_{2} \xleftarrow{5} Li_{2}[(C_{5}H_{4})_{2}SiMe_{2}] \xrightarrow{10} [(C_{5}H_{4})_{2}SiMe_{2}]Rh_{2}(CO)_{2}(\mu - CO)$$

$$20 \qquad 21 \qquad 22$$

$$\downarrow co$$

$$[(C_{5}H_{4})_{2}SiMe_{2}][Rh(CO)PMe_{3}]_{2} \xrightarrow{CF_{3}SO_{3}CH_{3}} [(C_{5}H_{4})_{2}SiMe_{2}][RhCH_{3}(CO)PMe_{3}]_{2} (PF_{6})_{2}$$

$$23 \qquad 24$$

Chem. Ber. 118 (1985)

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung mit Personal- und Sachmitteln. Herrn Prof. Dr. U. Schubert und Herrn Prof. Dr. U. T. Mueller-Westerhoff sind wir für wertvolle Hinweise, Frau U. Neumann und Fräulein R. Schedl für Elementaranalysen, Frau Dr. G. Lange für Massenspektren und Herrn cand. chem. W. Kohlmann für geschickte experimentelle Mitarbeit sehr zu Dank verbunden. Ganz besonders sei auch den Firmen BASF Aktiengesellschaft und DEGUSSA gedankt, die die Arbeiten durch wertvolle Chemikalienspenden nachhaltig unterstützten.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff oder Argon und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln ausgeführt. Die Darstellung der Ausgangsverbindungen 1, $2^{8,9}$, 20^{24} sowie der Rhodiumkomplexe 3^{25} , 4^{21} , 5^{11b} und 10^{25} folgte Literaturangaben. – IR: Perkin Elmer 397. – NMR: Varian EM 360. – MS: Varian MAT CH 7.

[Bis(cyclopentadiendiyl)methan]tetrakis(ethylen)dirhodium (6): Eine Suspension von 95 mg (0.65 mmol) 2 in 3 ml THF wird mit einer Lösung von 232 mg (0.60 mmol) 3 in 15 ml THF versetzt. Nach 15 min Rühren bei Raumtemp. wird das Lösungsmittel i. Vak. entfernt, der dunkle Rückstand in 5 ml Benzol gelöst und die Lösung über Al₂O₃ (Woelm, neutral, Akt.-Stufe V) filtriert. Das Filtrat wird zur Trockne gebracht und der verbleibende Feststoff aus Toluol/Hexan umkristallisiert. Man erhält gelbbraune, luftempfindliche Kristalle, Ausb. 167 mg (60%). – MS: m/z (I_{z}) = 460 (1%, M⁺), 432 (4; M⁺ – C₂H₄), 404 (21, M⁺ – 2C₂H₄), 376 (26; M⁺ – 3C₂H₄), 374 (100; C₁₁H₈Rh₂(C₂H₄)⁺), 348 (27; M⁺ – 4C₂H₄), 346 (24; C₁₁H₈Rh[±]₂), 218 (19; C₃H₇Rh⁺), 168 (15; C₃H₅Rh⁺).

 $C_{19}H_{26}Rh_2$ (460.2) Ber. C 49.59 H 5.69 Rh 44.72 Gef. C 49.99 H 5.81 Rh 44.56 [Bis(cyclopentadiendiyl)methan]bis(ethylen)bis(trimethylphosphan)dirhodium (7): Ausgehend von 130 mg (0.80 mmol) 2 und 373 mg (0.77 mmol) 4, analog wie für 6 beschrieben. Gelbbraune, luftempfindliche Kristalle, Ausb. 322 mg (75%). – MS: m/z (I_r) = 556 (1%, M⁺), 528 (8; M⁺ – C₂H₄), 500 (34; M⁺ – 2C₂H₄), 452 (50; M⁺ – C₂H₄ – PMe₃), 424 (26; M⁺ – 2C₂H₄ – PMe₃), 408 (100; C₁₁H₈Rh₂(PMe₂H)⁺), 168 (32; C₅H₅Rh⁺).

 $C_{21}H_{36}P_2Rh_2$ (556.3) Ber. C 45.34 H 6.52 Rh 36.99 Gef. C 45.57 H 6.79 Rh 36.90 [Bis(cyclopentadiendiyl)methan/tetrakis(trimethylphosphan)dirhodium (8): Eine Lösung von 1.103 g (1.90 mmol) 5 in 30 ml THF wird mit 325 mg (2.08 mmol) 2 versetzt. Es tritt sehr rasch Farbumschlag nach Dunkelrot ein. Nach kurzem Rühren wird das Solvens i. Vak. entfernt, der Rückstand mit Benzol/Hexan (1:3) extrahiert und der Extrakt filtriert. Nach Entfernen des Lösungsmittels wird der verbleibende Feststoff aus Toluol/Hexan umkristallisiert. Man erhält violette, schr luftempfindliche Kristalle, Ausb. 496 mg (40%). – MS: m/z (I_r) = 652 (18%; M⁺), 500 (4; M⁺ – 2PMe_3), 397 (34; M⁺ – Rh(PMe_3)_2), 321 (50; $C_{11}H_{10}RhPMe_3^+$), 168 (25; $C_{3}H_{3}Rh^+$).

 $C_{23}H_{46}P_4Rh_2 \ (652.3) \quad \text{Ber. C } 42.35 \ \ \text{H} \ 7.11 \ \ \text{Rh} \ 31.55 \quad \text{Gef. C } 42.38 \ \ \text{H} \ 6.96 \ \ \text{Rh} \ 31.35$

Dicarbonyl[bis(cyclopentadiendiyl)methan]bis(trimethylphosphan)dirhodium (9): In cine Lösung von 465 mg (0.71 mmol) 8 in 20 ml Benzol wird 2 h CO eingeleitet, wobei eine Farbänderung von Violett nach Rot eintritt. Nach Entfernen des Lösungsmittels i. Vak. wird der Rückstand aus Toluol/Hexan umkristallisiert. Man erhält gelbbraune, luftempfindliche Kristalle, Ausb. 434 mg (78%). – IR (Nujol): $v(CO) = 1920 \text{ cm}^{-1}$. – MS: m/z $(I_t) = 556 (2\%, M^+), 528 (100; M^+ – CO), 500 (10; M^+ – 2CO), 452 (20; M^+ – CO –$ PMe₃), 321 (27; C₁₁H₁₀RhPMe⁺₃), 168 (16; C₅H₅Rh⁺).

$$C_{19}H_{28}O_2P_2Rh_2$$
 (556.2) Ber. C 41.03 H 5.07 Rh 37.00
Gef. C 41.18 H 5.16 Rh 36.65

Chem. Ber. 118 (1985)

 μ -Carbonyl-dicarbonyl/bis(cyclopentadiendiyl)methan/dirhodium(Rh-Rh) (12): Ausgehend von 400 mg (2.56 mmol) 2 und 984 mg (2.53 mmol) 10, analog wie für 6 beschrieben. Rotbraune Kristalle, Ausb. 883 mg (81%). – IR (KBr): v(CO) = 2020, 2000, 1960, 1800 cm⁻¹; IR (THF): v(CO) = 2010, 2000, 1963, 1816 cm⁻¹. – MS: m/z (I_r) = 432 (35%; M⁺), 404 (38; M⁺ – CO), 376 (18; M⁺ – 2CO), 348 (100; M⁺ – 3CO).

C14H10O3Rh2 (432.0) Ber. C 38.92 H 2.33 Rh 47.64 Gef. C 39.19 H 2.24 Rh 47.55

[Bis(cyclopentadiendiyl)methan]dihydridotetrakis(trimethylphosphan)dirhodium-bis(hexafluorophosphat) (13): Eine Lösung von 120 mg (0.18 mmol) 8 in 15 ml Benzol wird mit 59 mg (0.36 mmol) NH₄PF₆ versetzt. Nach 5 min Rühren wird die Niederschlagsbildung durch Zugabe von 15 ml Ether vervollständigt. Die Lösung wird dekantiert, der Rückstand dreimal mit je 10 ml Ether gewaschen und i. Vak. getrocknet. Man erhält hellbraune Kristalle, Ausb. 141 mg (83%).

 $\begin{array}{rrrr} C_{23}H_{48}F_{12}P_6Rh_2 \ (944.3) & \mbox{Ber.} \ C \ 29.25 \ \ H \ 5.12 \ \ Rh \ 21.79 \\ & \mbox{Gef.} \ \ C \ 28.64 \ \ H \ 4.91 \ \ Rh \ 21.26 \end{array}$

[Bis(cyclopentadiendiyl)methan]bis(ethylen)dihydridobis(trimethylphosphan)dirhodiumbis(hexafluorophosphat) (14): Eine Lösung von 119 mg (0.21 mmol) 7 in 15 ml Benzol/Ether (1:1) wird tropfenweise mit 37 µl (0.42 mmol) CF₃SO₃H versetzt. Nach Dekantieren der überstehenden Lösung wird der ölige Rückstand zweimal mit je 10 ml Ether gewaschen, in 2 ml Methanol gelöst und die Lösung mit 68.5 mg (0.42 mmol) NH₄PF₆ versetzt. Die Fällung des Produkts wird durch Zugabe von 10 ml Ether vervollständigt. Der rotbraune Feststoff wird abfiltriert, dreimal mit je 10 ml Ether gewaschen und i. Vak. getrocknet, Ausb. 139 mg (78%). C₂₁H₃₈F₁₂P₄Rh₂ (848.2) Ber. C 29.74 H 4.52 Rh 24.26 Gef. C 29.49 H 4.39 Rh 24.02

Die Reaktion einer etherischen Lösung von 7 mit einer Lösung von HBF₄ in Ether ergibt einen rotvioletten Feststoff, dessen ¹H-NMR-Spektrum (in CD_3NO_2) mit demjenigen von 14 übereinstimmt.

Dicarbonyl[bis(cyclopentadiendiyl)methan]dihydridobis(trimethylphosphan)dirhodiumbis(hexafluorophosphat) (15): Ausgehend von 123 mg (0.22 mmol) 9 und 39 µl (0.44 mmol) CF₃SO₃H, analog wie für 14 beschrieben. Rotbraune Kristalle, Ausb. 144 mg (77%).

 $\begin{array}{c} C_{19}H_{30}F_{12}O_2P_4Rh_2 \ (848.1) & \mbox{Ber.} \ C \ 26.90 \ H \ 3.57 \ Rh \ 24.27 \\ & \mbox{Gef.} \ C \ 26.91 \ H \ 3.56 \ Rh \ 24.37 \end{array}$

Die Reaktion mit HBF₄ statt CF₃SO₃H verläuft analog; das ¹H-NMR-Spektrum (in CD_3NO_2) des Produkts stimmt mit demjenigen von 15 überein.

[Bis(cyclopentadiendiyl)methan]dimethyltetrakis(trimethylphosphan)dirhodium-bis(hexafluorophosphat) (16): Eine Lösung von 132 mg (0.20 mmol) 8 in 15 ml Benzol/Ether (1:1) wird tropfenweise mit 45 μ l (0.41 mmol) CF₃SO₃CH₃ versetzt. Es bildet sich ein grauer Niederschlag, der wie für 14 beschrieben in das entsprechende PF₆-Salz übergeführt wird. Graue, luftstabile Kristalle, Ausb. 167 mg (86%).

 $\begin{array}{rl} C_{25}H_{52}F_{12}P_6Rh_2 \ (972.3) & \mbox{Ber.} \ C \ 30.88 \ H \ 5.39 \ Rh \ 21.17 \\ & \mbox{Gef.} \ C \ 30.35 \ H \ 5.20 \ Rh \ 21.10 \end{array}$

[Bis(cyclopentadiendiyl)methan]bis(ethylen)dimethylbis(trimethylphosphan)dirhodiumbis(hexafluorophosphat) (17): Ausgehend von 65 mg (0.12 mmol) 7 und 27 μ l (0.24 mmol) CF₃SO₃CH₃, analog wie für 16 beschricben. Hellbraune, luftstabile Kristalle, Ausb. 88 mg (84%).

 $\begin{array}{rrrr} C_{23}H_{42}F_{12}P_4Rh_2 \ (876.3) & \mbox{Ber.} \ C \ 31.53 & \mbox{H} \ 4.83 & \mbox{Rh} \ 23.49 \\ & \mbox{Gef.} \ C \ 31.68 & \mbox{H} \ 4.62 & \mbox{Rh} \ 23.35 \end{array}$

Dicarbonyl[bis(cyclopentadiendiyl)methan]dimethylbis(trimethylphosphan)dirhodium-bis-(hexafluorophosphat) (18): Ausgehend von 106 mg (0.19 mmol) 9 und 42 μ l (0.38 mmol) CF₃SO₃CH₃, analog wie für 16 beschrieben. Ockerfarbene, luftstabile Kristalle, Ausb. 136 mg (81%). C₂₁H₃₄F₁₂O₂P₄Rh₂ (876.2) Ber. C 28.79 H 3.91 Rh 23.49

Gef. C 28.74 H 3.70 Rh 23.52

Diacetyl[bis(cyclopentadiendiyl)methan]diiodobis(trimethylphosphan)dirhodium (19): Eine Lösung von 122 mg (0.22 mmol) 9 in 10 ml Aceton/Benzol (1:1) wird mit einem Überschuß Methyliodid (ca. 1 ml) versetzt. Es entsteht zunächst ein ockerfarbener Niederschlag, der nach 30 min Rühren wieder in Lösung geht. Die Lösung wird i. Vak. zur Trockne gebracht und der Rückstand aus Toluol/Hexan umkristallisiert. Man erhält hellbraune, luftstabile Kristalle, Ausb. 144 mg (78%).

[Bis(cyclopentadiendiyl)dimethylsilan]tetrakis(trimethylphosphan)dirhodium (20): Analog wie für 8 beschrieben, ausgehend von 941 mg (1.62 mmol) 5 und 330 mg (1.64 mmol) 21 in 30 ml THF. Man erhält ein violettes, sehr luftempfindliches Öl, das sich beim Versuch der chromatographischen Reinigung (Al₂O₃, Akt.-Stufe V) rasch zersetzt. – ¹H-NMR (C₆H₆): $\delta = 5.51$ (m, br), C₅H₄; 1.30 (dvt), N = 9.0 Hz, J(RhH) = 1.4 Hz, PMe₅; 0.37 (s), SiMe₂.

 μ -Carbonyl-dicarbonyl[bis(cyclopentadiendiyl)dimethylsilan]dirhodium (22): Analog wie für 12 beschrieben, ausgehend von 750 mg (1.93 mmol) 10 und 370 mg (2.0 mmol) 21 in 25 ml THF. Rotbraune Kristalle, Ausb. 470 mg (48%). – IR (KBr): v(CO) = 2010, 1975, 1960, 1800 cm⁻¹. – ¹H-NMR (C₆H₆): $\delta = 5.64$ ("t"), 4.87 ("t"), C₃H₄; 0.32 (s), SiMe₂. – MS: m/z ($I_{\rm f}$) = 476 (40%, M⁺), 448 (30; M⁺ – CO), 420 (38; M⁺ – 2 CO), 392 (100; M⁺ – 3 CO). C₁₅H₁₄O₃Rh₂Si (476.2) Ber. C 37.84 H 2.96 Gef. C 38.37 H 3.00

Dicarbonyl[bis(cyclopentadiendiyl)dimethylsilan]bis(trimethylphosphan)dirhodium (23): Analog wie für 9 beschrieben, ausgehend von einer benzolischen Lösung von 20. Man erhält ein braunes, sehr luftempfindliches Öl, das sich beim Versuch der chromatographischen Reinigung (Al₂O₃, Akt.-Stufe V) rasch zersetzt. – IR (Nujol): ν (CO) = 1910 cm⁻¹. – ¹H-NMR (C₆H₆): δ = 5.25 (m, br), C₅H₄; 1.32 (dd), J(PH) = 10.0 Hz, J(RhH) = 1.6 Hz, PMe₃; 0.35 (s), SiMe₂.

Dicarbonyl[bis(cyclopentadiendiyl)dimethylsilan]dimethylbis(trimethylphosphan)dirhodium-bis(hexafluorophosphat) (24): Analog wie für 18 beschrieben, ausgehend von einer Benzol/Ether-Lösung von 23. Hellbraune Kristalle, Ausb. ca. 85%. – IR (Nujol): v(CO) = 1925 cm⁻¹. – ¹H-NMR (CD₃NO₂): $\delta = 6.20$ (br), 5.90 (br), C₅H₄; 1.60 (dd), J(PH) = 12.0 Hz, J(RhH) = 1.2 Hz, PMe₃; 1.07 (dd), J(PH) = 5.0 Hz, J(RhH) = 2.2 Hz, RhCH₃; 0.07 (s), SiMe₂.

 $\begin{array}{c} C_{22}H_{38}F_{12}O_2P_4Rh_2Si~(920.3) & \mbox{Ber.}~C~28.71 & \mbox{H}~4.16 & \mbox{Rh}~22.36 \\ & \mbox{Gef.}~C~28.26 & \mbox{H}~3.85 & \mbox{Rh}~21.86 \end{array}$

Röntgenstrukturanalyse von 12^{*)}: Aus Toluol wurden bei $+20^{\circ} \cdots -20^{\circ}$ C Einkristalle erhalten, von denen einer mit den Abmessungen $0.05 \times 0.15 \times 0.30$ mm vermessen wurde. Zelldaten: Orthorhombisch, a = 607.6(5), b = 1395.6(7), c = 1483.5(8) pm, $V = 1258.0 \cdot 10^{6}$ pm³. Raumgruppe *Pcmn* (Z = 4), g(ber.) = 2.28 g/cm³. Auf einem Syntex P2₁-

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51 222, der Autoren und des Zeitschriftenzitats angefordert werden.

Diffraktometer wurden 1160 unabhängige Reflexe (Mo- K_{α} -Strahlung, $\lambda = 71.069$ pm, Graphitmonochromator, ω -Scan, T = 125 K) im Bereich $5^{\circ} \le 2\Theta \le 50^{\circ}$ vermessen. Die Reflexe wurden Lorentz- und Polarisationskorrekturen sowie einer empirischen Absorptionskorrektur ($\mu = 25.5$ cm⁻¹) unterworfen. Die Lösung der Struktur erfolgte nach der Patterson-Methode (Syntex-XTL). Die verbleibenden Atome wurden aus Differenz-Fourier-Synthesen entnommen. Verfeinerung der Nicht-Wasserstoffatome nach der Methode der kleinsten Quadrate mit der vollständigen Matrix (Atomformfaktoren für ungeladene Atome lt. International Tables) konvergierte gegen $R_1 = 0.023$ und $R_2 = 0.025$ für 919 Strukturfaktoren $(F_{o} \ge 5.92 \sigma (F_{o}))$. Dic Atomparameter der Nicht-Wasserstoffatome sind in Tab. 2, wichtige Abstände und Winkel in Tab. 3 wiedergegeben.

- ¹⁾ LIII. Mitteil.: J. Gotzig, R. Werner und H. Werner, J. Organomet. Chem. 290, 99 (1985).
- ²⁾ H. Werner, Pure Appl. Chem. 54, 177 (1982).
 ³⁾ H. Werner, Angew. Chem. 95, 932 (1983); Angew. Chem., Int. Ed. Engl. 22, 927 (1983).
- ^{4) 4a)} H. Werner und W. Hofmann, Angew. Chem. **91**, 172 (1979); Angew. Chem., Int. Ed. Engl. **18**, 158 (1979). ^{4b)} H. Werner, W. Hofmann, R. Zolk, L. F. Dahl, J. Kocal und A. Kühn, J. Organomet. Chem. 289, 173 (1985).
- ⁵⁾ B. Klingert und H. Werner, J. Organomet. Chem. 252, C 47 (1983).
- ⁶⁾ W. Hofmann und H. Werner, Angew. Chem. 93, 1088 (1981); Angew. Chem., Int. Ed. Engl. 20, 1014 (1981).
- ⁷⁾ Für die Mehrzahl der hier beschriebenen Ergebnisse siehe: H. J. Scholz, Diplomarbeit, Univ. Würzburg 1983.
- ⁸⁾ H. Schaltegger, M. Neuenschwander und D. Meuche, Helv. Chim. Acta 48, 955 (1965).
- ⁹⁾ T. J. Katz, M. Acton und G. Martin, J. Am. Chem. Soc. 95, 2934 (1973).
- ¹⁰⁾ U. T. Mueller-Westerhoff, A. Nazzal und M. Tanner, J. Organomet. Chem. 236, C 41
- (1982). ¹¹⁾ ^(1a) M. Arthurs, S. M. Nelson und M. G. B. Drew, J. Chem. Soc., Dalton Trans. 1977, ¹¹⁾ ^(1a) M. Arthurs, S. M. Nelson und M. G. B. Drew, J. Chem. Soc., Dalton Trans. 1977,
- ¹²⁾ D. W. Slocum, C. R. Ernst und W. E. Jones, J. Org. Chem. 37, 4278 (1972).
- ¹³⁾ ^{13a)} R. Cramer, J. B. Kline und D. J. Roberts, J. Am. Chem. Soc. **91**, 2519 (1969). ^{13b)} R. Cramer und J. J. Mrowca, Inorg. Chim. Acta 5, 528 (1971).
- ¹⁴⁾ E. O. Fischer und K. Bittler, Z. Naturforsch., Teil B 16, 835 (1961).
- ¹⁵⁾ W. A. Herrmann, C. Krüger, R. Goddard und I. Bernal, J. Organomet. Chem. 140, 73 (1977).
- ¹⁶⁾ O. S. Mills und J. P. Nice, J. Organomet. Chem. 10, 337 (1967).
- ¹⁷⁾ J. Evans, B. F. G. Johnson, J. Lewis und J. R. Norton, J. Chem. Soc., Chem. Commun. 1973, 79.
- ¹⁸⁾ J. Weaver und P. Woodward, J. Chem. Soc., Dalton Trans. 1973, 1439.
- ¹⁹⁾ P. A. Wegner, V. A. Uski, R. P. Kiester, S. Dabestani und V. W. Day, J. Am. Chem. Soc. 99, 4846 (1977).
- ²⁰⁾ W. A. Herrmann, J. Plank, C. Bauer, M. L. Ziegler, E. Goggolz und R. Alt, Z. Anorg. Allg. Chem. 487, 85 (1982).
- ²¹⁾ H. Werner und R. Feser, J. Organomet. Chem. 232, 351 (1982).
- ²²⁾ R. Feser und H. Werner, J. Organomet. Chem. 233, 193 (1982).
- ²³⁾ B. Heiser, Dissertation, Univ. Würzburg 1983.
- ²⁴⁾ ^{24a)} S. Moorehouse, Ph. D. Thesis, University of Bristol 1971. ^{24b)} H. Köpf und W. Kahl, J. Organomet. Chem. 64, C 37 (1974).
- ²⁵⁾ R. Cramer, Inorg. Synth. 15, 14 (1974).

[14/85]